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Volumetric DDo0S Attacks ﬂ(“.
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@ Attackers send high-volume attack traffic
® Attack traffic saturates bottleneck links
u Elephant flows, amplification attacks (DNS, NTP, SSDP), ...
® Legitimate traffic is suppressed and targets availability is impeded
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TCAM-Based Ingress Filtering ﬂ(“.
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® Reduce infrastructure load

® |dentify suspicious IP source subnets
® Establish upstream filter rules in TCAM

® Cost and power consumption limit TCAM capacity

Traffic sources

_____ Ingress P

"""""""""" S filter AN

‘ y R il - In .
N ifd A& gress traffic (Sez) Upstream

ﬁ}g‘ RC] %&ﬂ J B } == etwork
\ .l SN
‘ g‘ -~ ﬁlél TCAM-based filter ruleset

——————————— ! \“. RuleNo.  Match Action

rs, ‘ ‘\‘C ; M ,"' source IP in A drop

<

S source IP in B drop

_______________ source IPin C drop
Match IP source subnet

TCAM: Ternary content-addressable memory

05.04.2022 Hauke Heseding - Reinforcement Learning-Controlled Mitigation of Volumetric DDoS Attacks Institute of Telematics, Research Group Prof. Zitterbart



Finding Effective Filter Rules ﬂ(".

® Hierarchical Heavy Hitters (HHH) — detect suspicious IP subnets
@ Reinforcement learning — adjust HHH thresholds

&

Reinforcement learning agent

- Filter rules
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Hierarchical Heavy Hitters (HHH)

® Find IP subnets sending at least fraction ¢ of total traffic
® Aggregate traffic volume by IP subnet
® Select filter rules from identified HHHs
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Filter Rule Selection ﬂ(“.
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® Avoid over-aggregation
® Hierarchy threshold H™#* limits aggregation
® Avoid excessive TCAM utilization
® Adjust minimum frequency threshold ¢ . Excessive aggregation
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Finding Effective Filter Rules ﬂ(".

® Hierarchical Heavy Hitters (HHH) — detect suspicious IP subnets
@ Reinforcement learning — adjust HHH thresholds

&

Reinforcement learning agent

- Filter rules
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How to Choose Effective Thresholds? ﬂ(".

® Deep Reinforcement Learning with Deep Q-Networks (DQN)
® Agent observes traffic distribution and filter effectiveness
® Agent adapts thresholds when traffic patterns evolve over time
® Agent learns over time from interaction with mitigation environment
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Filter Rule Adaptation —\\J(IT
® Continuously executed control loop for threshold adaptation
1. Query HHH with selected parameters
Propagate HHH-derived filter rules upstream to TCAM

2
3. Agent observes TCAM utilization and filter rule effectiveness
4. Agent adapts thresholds to match traffic pattern

Reinforcement learning agent
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Observations and Actions ﬂ(".

® Observation space
® Number and of distribution of detected HHHs and filter rules
® Estimated precision, sensitivity, false positive rate

® Discrete action space: A4, 4,, ...
® Represents possible parameter combinations
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Reward Function Modelling ﬂ(".

® Reward functionx(p, s, f,7) = 1,(p) - 15(s) - 17 (f) - 1. (1)
® Polynomial factors
® Precision p, sensitivity s, false positive rate f, filter rule count r
m Different emphasis on mitigation goals

x: false positive rate
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Simulated Traffic Scenario ﬂ(".

® Randomized traffic source activity over time
® Four phases with different attack traffic patterns
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A Snapshot Filter Rule Selection

Attack traffic
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Selected Results
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Agent adapts to traffic patterns
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Significant attack traffic reduction

Low false positive rate maintained
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Conclusion ..\\J(IT
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® TCAM-based ingress filtering
® Hierarchical heavy hitters for attack traffic source identification
® Upstream propagation of filter rules for early traffic filtering
® Agent learns and adapts thresholds to adapt filter rules

® [n comparison
® Avoids extensive state keeping of microflow-based traffic segmentation(34:56l
® Respects traffic composition typically disregarded by router throttling(*.2

® Simulative evaluation
® Significant attack traffic reduction
® Maintains low false positive rates
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