4]}

Karlsruhe Institute of Technology

Institute of Telematics
Research Group Prof. Zitterbart

Reinforcement Learning-Controlled Mitigation of

Volumetric DDoS Attacks

Hauke Heseding

Volumetric DDoS Attacks

@ Attackers send high-volume attack traffic
@ Attack traffic congests bottleneck links
@ Reduce infrastructure load by early traffic filtering

Early attack traffic removal desired
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Hierarchical Heavy Hitters (HHH)

@ |dentify attack traffic sources
@ Find subnets sending fraction ¢ of total traffic
@ Preserve limited TCAM capacity — choose ¢
@ Avoid excessive aggregation — choose H™M#
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Effective Trade-Offs

@ Reward function prioritizes mitigation goals

@ Precision p, sensitivity s, false positive rate f,
filter rule count r
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@ Prioritization by tuning
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X: precision and sensitivity
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TCAM-Based Ingress Filtering

@ Establish ingress filter in upstream network
@ Ternary content-addressable memory (TCAM)
@ Evaluate filter rules in a single clock cycle

@ Adapt to changing traffic patterns
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Match IP source subnet

Reduce load on
downstream networks

Adaptive Filter Rule Selection

® Reinforcement learning with Deep Q-Networks

@ Agent learns from traffic patterns
@ Agent selects ¢, H™** for HHH algorithm
@ Agent adapts filter rule granularity to traffic pattern
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Flow statistics and Estimated filter rule
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Simulated Dynamic Traffic Scenario
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